Latest Tutorials

Learn about the latest technologies from fellow newline community members!

  • React
  • Angular
  • Vue
  • Svelte
  • NextJS
  • Redux
  • Apollo
  • Storybook
  • D3
  • Testing Library
  • JavaScript
  • TypeScript
  • Node.js
  • Deno
  • Rust
  • Python
  • GraphQL
  • React
  • Angular
  • Vue
  • Svelte
  • NextJS
  • Redux
  • Apollo
  • Storybook
  • D3
  • Testing Library
  • JavaScript
  • TypeScript
  • Node.js
  • Deno
  • Rust
  • Python
  • GraphQL

A Comparative Analysis between Firebase, Amplify, and Supabase for Your Next.js Application

In this blog, I will explore a critical decision that Indie Hackers and startups often grapple with, which is selecting the ideal real-time database platform for building a Real-Time Collaborative Application with Next.js. My focus in this blog will be on Firebase , AWS Amplify , and Supabase , dissecting their features, limitations, and costs, and ultimately pinpointing the most suitable platform for Indie Hackers. When it comes to platforms for real-time database applications, three platforms stand out: Firebase , AWS Amplify , and Supabase . Each has its strengths, but not all are perfectly tailored to the specific requirements of Indie Hackers, particularly those primarily concerned with developing a Minimum Viable Product (MVP) and swift feature development and testing.

Unveiling the Truth: Why Node.js May Fall Short for Real-Time Collaboration Apps

Navigating through the landscape of real-time collaboration apps presents a number of challenges, regardless of whether one is dealing with a simple chat app or a complex collaborative board. Node.js faces several challenges in the context of real-time collaboration apps, particularly around synchronization , latency , conflict resolution , and scalability . Its single-threaded nature can lead to bottlenecks under CPU-intensive tasks, potentially worsening latency issues and complicating synchronization of user activities in real-time. When it comes to conflict resolution , the platform does not provide built-in mechanisms, requiring developers to implement these features manually, which can be error-prone and inefficient. Regarding scalability , while Node.js handles a large number of simultaneous connections well, its performance can degrade under the computational demands of complex collaborative environments. Node.js also does not inherently offer offline support , which is critical for a seamless user experience in collaborative apps, necessitating additional solutions. Security in Node.js, crucial for collaborative apps, often demands extensive customization and additional modules, increasing development complexity. Resource optimization and ensuring cross-platform compatibility also pose challenges, as they can require a variety of additional tools and libraries to achieve efficient outcomes. This article dives deep into the reasons why Node.js may not measure up for real-time collaborative apps in certain use cases and suggests possible alternatives.

I got a job offer, thanks in a big part to your teaching. They sent a test as part of the interview process, and this was a huge help to implement my own Node server.

This has been a really good investment!

Advance your career with newline Pro.

Only $40 per month for unlimited access to over 60+ books, guides and courses!

Learn More

JavaScript Compilation vs Interpretation: A Deep Dive

In this comprehensive guide, we will demystify a fascinating aspect of JavaScript, one of the most widely-used programming languages today. The key question we will grapple with is: "Is JavaScript a compiled or interpreted language?" We'll probe into the complex depths of JavaScript code execution and the functioning of modern JavaScript engines. This understanding will equip you to grasp the finer dynamics of JavaScript, empowering you to evolve into a more proficient JavaScript developer. JavaScript is frequently labeled as an 'interpreted' language, a tag attributed to its execution style. However, this description isn't wholly accurate. While it doesn't generate an executable file like conventional compiled languages, JavaScript does undergo a compilation phase. This guide aims to shed light on this intriguing facet of JavaScript, thereby dispelling any prevailing misconceptions. Conventionally, 'compiled' languages such as C++ convert the source code into a binary executable file. This file can then be disseminated and executed. 'Interpreted' languages, on the contrary, don't yield an executable file. They rely on interpreters to read and execute the code in real-time.

    🔮 No More Guesswork. Introducing Student Reviews on Course Pages!🔍

    Have you ever found yourself teetering on the edge of purchasing a course? It's like you're on a suspenseful game show, faced with choosing a mystery door. It could be total junk or it might be GOLD! Exactly what your looking for. The stakes are high. Will it be the right choice? We’ve all been there, desperately scouring the internet for any snippet of information that might shed light on what lies ahead. Will the course be a game-changer or a glorified nap session? Without the wisdom of those who've gone before us, it's like navigating a jungle blindfolded — exciting, yes, but also potentially treacherous. We're here to banish uncertainty and save you valuable time, eliminating the mystery and suspense— although we apologize if you were looking forward to that adventure and countless hours of wasted time.
    Thumbnail Image of Tutorial 🔮 No More Guesswork. Introducing Student Reviews on Course Pages!🔍

    A Comprehensive Guide to Custom Iterables in JavaScript

    This article embarks on a journey into the captivating world of JavaScript custom iterable objects. It's an important topic when there is a need to iterate over related objects or define specific iteration behaviors for certain objects. Iterables and iterators are frequently used in JavaScript coding. An iterable is an object that determines its iteration behavior, like the values looped over in a for...of construct, while an iterator is an object that maintains its current position in an iterable. Understanding these two principles, we can create custom iterable objects in JavaScript by implementing the Symbol.iterator method, which returns the iterator object that includes the next method.